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BACKGROUND: Monoclonal gammopathies (MGs) are
plasma cell disorders defined by the clonal expansion of
plasma cells, resulting in the characteristic excretion of a
monoclonal immunoglobulin (M-protein). M-protein
detection and quantification are integral parts of the
diagnosis and monitoring of MGs. Novel treatment
modalities impose new challenges on the traditional
electrophoretic and immunochemical methods that are
routinely used for M-protein diagnostics, such as inter-
ferences from therapeutic monoclonal antibodies and
the need for increased analytical sensitivity to measure
minimal residual disease.

CONTENT: Mass spectrometry (MS) is ideally suited to
accurate mass measurements or targeted measurement
of unique clonotypic peptide fragments. Based on these
features, MS-based methods allow for the analytically
sensitive measurement of the patient-specific M-protein.

SUMMARY: This review provides a comprehensive
overview of the MS methods that have been developed
recently to detect, characterize, and quantify M-pro-
teins. The advantages and disadvantages of using these
techniques in clinical practice and the impact they will
have on the management of patients with MGs are
discussed.

Introduction

Monoclonal gammopathies (MGs) are plasma cell disor-
ders defined by the clonal expansion of plasma cells,
resulting in characteristic excretion of a monoclonal im-
munoglobulin (Ig; M-protein). MGs encompass a broad
spectrum of clinical disorders ranging from asymptom-
atic, benign MG of undetermined significance to

life-threatening diseases such as multiple myeloma
(MM) and amyloid light chain (AL) amyloidosis (1).

M-protein detection and quantification are integral
parts of diagnosis and monitoring of MG (2). M-protein
may consist of intact monoclonal Ig and/or monoclonal
fragments such as free light chains (FLC) that can be
detected in serum and/or urine. M-protein diagnostics is
most commonly performed using electrophoretic meth-
ods, supplemented with additional assays for quantifica-
tion and clonality testing (3). Nonetheless, both
traditional electrophoresis and immunochemical meth-
ods have analytical limitations that include standardiza-
tion issues among different methods; poor analytical
sensitivity, which hampers detection and/or accurate
quantification of small M-proteins; and disease activity
that remains unnoticed in patients with nonsecretory
myeloma (4).

Novel treatment modalities for MM have led to
deeper responses, resulting in an increased percentage of
patients that obtain stringent complete response (sCR),
in which residual disease can no longer be detected us-
ing routine diagnostics in blood and/or urine (5).
Because many patients who obtain sCR will eventually
relapse, analytically more sensitive assays capable of
measuring minimal residual disease (MRD) are urgently
needed. In addition, the introduction of therapeutic
monoclonal antibodies (t-mAbs) can directly hamper
traditional M-protein diagnostics because it can be chal-
lenging to distinguish the human(ized) t-mAbs from the
endogenous M-protein.

Each M-protein is derived from recombination and
somatic hypermutation events of both the heavy- and
light-chain loci of the clonal B cell. Consequently, M-
protein has both a unique amino acid sequence and
unique molecular mass. Routine M-protein diagnostic
methods, including electrophoretic and immunochemi-
cal methods, do not make use of these unique
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M-protein features, beyond the general region of elec-
trophoretic migration. Mass spectrometry (MS) is ide-
ally suited to making accurate mass measurements or
targeted measurements of unique M-protein peptides.
Therefore, it is not surprising that new MS-based meth-
ods for the detection and quantification of M-proteins
appeared in the literature beginning in 2014. Some of
these novel methods have already been implemented in
routine diagnostics. We anticipate that, in the near fu-
ture, MS will play an increasingly important role in the
field of M-protein diagnostics.

In this review we provide a comprehensive overview
of current MS methods that can be applied to detect,
characterize, and quantify M-proteins. The advantages
and disadvantages to using these techniques to comple-
ment routine M-protein diagnostics and the impact
they will have on the management of patients with MG
are discussed.

Routine M-Protein Diagnostics

M-protein is a serum biomarker that relates directly to
the clonal plasma cell burden in a patient with MG.
The secreted M-protein can be used as a screening tool
for the identification of MG and as a quantitative bio-
marker for disease prognostication to follow the course
of disease and to monitor response to therapy. M-pro-
tein diagnostics are performed using high-resolution and
semiautomated electrophoretic methods that are supple-
mented with additional assays for quantification and
clonality testing (3).

Serum protein electrophoresis (SPE) is performed
using either agarose gel electrophoresis or capillary elec-
trophoresis. These electrophoretic methods are com-
monly used for M-protein screening and quantification.
Further characterization of the M-protein isotype is typ-
ically performed using immunofixation electrophoresis
(IFE) or immunosubtraction–capillary electrophoresis.
Turbidimetric and nephelometric analyses are per-
formed to quantify total IgG, IgA, IgM, FLC, and
heavy–light chain pairs (2, 3). Katzmann et al. (6) have
studied which panel of serologic tests is most cost-
effective to screen for MG in a large cohort of patients
with various plasma cell proliferative disorders. The het-
erogeneity of M-proteins and the limitation of each in-
dividual assay necessitates the use of multiple tests.

Numerous international guidelines provide recom-
mendations for M-protein diagnostics of patients with a
suspected MG and for patient follow-up (3, 7–9).
Despite these guidelines, test algorithms for M-protein
diagnostics vary widely across laboratories (10). M-pro-
tein quantification is further challenged by the analytical
limitations and interferences observed both with electro-
phoretic methods and immunoassays applied within the
field of M-protein diagnostics (4, 11, 12). The actual

spike of the M-protein as part of electrophoretic quanti-
fication remains a subjective procedure with suboptimal
quantification of small M-proteins and those that comi-
grate with other abundant serum proteins, for example,
in the b region (4, 13). Recognition of the imprecision
and inaccuracy of measurements of low-concentration
monoclonal abnormalities is reflected in the
International Myeloma Working Group (IMWG)
guidelines that define a “measurable” M-protein as one
that meets at least 1 of the following 3 criteria: serum
M-protein �10 g/L; urine M-protein �200 mg/24 h; or
serum involved FLC �100 mg/L, provided that the
FLC ratio is abnormal (14).

New treatment modalities have greatly improved
the rates and depth of responses in patients with MM in
the past decade (15, 16). Because an increasing percent-
age of newly diagnosed MM patients obtain sCR, new
assays need to be developed that can identify responses
beyond conventionally defined sCR.

MRD Testing

Driven by the evolving framework of more effective
multidrug treatment protocols, new methods have been
developed to detect and quantify MRD. Current meth-
odologies to assess MRD in MM patients focus on mo-
lecular and flow cytometric techniques performed on
bone marrow aspirates (5, 17). It is evident that among
patients with MM who achieve sCR, MRD assessment
by multicolor flow cytometry (MFC), allele-specific oli-
gonucleotide–quantitative PCR (ASO-qPCR), or next-
generation sequencing (NGS) can play an important
role in patient management. MRD status is a major
prognostic factor (18). Moreover, MRD assessment can
be applied to assess treatment effectiveness (19).
Consequently, new IMWG consensus criteria for MRD
assessment have been defined that reach beyond the de-
tection of the present therapy response criteria (20).
Generally, MRD negativity is defined by the absence of
clonal plasma cells in bone marrow aspirates using
methods with a minimum detection capability of 1 in
�105 nucleated cells.

The cellular method (MFC) and molecular meth-
ods (ASO-qPCR and NGS) to assess MRD allow the
examination of millions of bone marrow cells or the cor-
responding amount of DNA (Fig. 1). Each technique
has advantages and disadvantages that need to be con-
sidered (Table 1). The various MRD methods and their
test characteristics have been extensively reviewed else-
where (5, 17, 19). Characteristics of an ideal MRD assay
are high sensitivity, specificity, and reproducibility; fea-
sibility for all MM patients; standardization among
institutes; small sample volume; easy applicability; rapid
turnaround time; and cost-effectiveness. None of the
currently described methods to assess MRD meet all
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ideal test requirements. To assess differences in test
characteristics in individual patients, the IMWG
encourages inclusion of both MFC and NGS
methods in prospective trials. This also allows direct
comparison between the cellular methods that measure
percentage of myeloma cells and the molecular methods
that measure myeloma-specific gene sequences. It is fur-
ther advised that MRD assessment should not be lim-
ited to a single time point because MRD kinetics over
the disease course provide more robust evaluation of dis-
ease control in patients with MM after achieving sCR
(20).

The strongest limitation of the methods described
is that disease monitoring must be performed on bone
marrow aspirates, which introduces the risk of nonrepre-
sentative sampling resulting from tumor heterogeneity
(21). The patchy nature of the disease has a direct nega-
tive impact on the reported results of these methods,

and extramedullary MM outgrowth may give false-
negative results even after repetitive bone marrow sam-
pling. Another potential limitation is the complexity of
these techniques, which makes them costly and difficult
to standardize (22). In addition, the need for repetitive
bone marrow punctures for patient follow-up is a physi-
cal burden that reduces the quality of life for individual
patients.

Evaluation of MRD in peripheral blood would rep-
resent an attractive minimally invasive alternative to cir-
cumvent the noted disadvantages of MRD assessment
in bone marrow. Studies investigating the possibility of
detecting MM disease activity in peripheral blood have
emerged that use MFC on circulating myeloma cells
and sequencing of tumor circulating DNA. Taken to-
gether, myeloma-specific targets in peripheral blood are
available for evaluation of myeloma disease activity at di-
agnosis (23). However, myeloma cells and tumor

Fig. 1. Graphical overview of individual features of a selection of techniques to monitor MG disease activity. IHC, immunohisto-
chemistry; LLoD, lower limit of detection; LLoQ, lower limit of quantification.
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circulating DNA are present at much lower levels in pe-
ripheral blood compared with the bone marrow.
Consequently, disease activity measured at diagnosis
becomes undetectable soon after effective therapy, even
among electrophoretic-positive patients (24). For that
reason, these methods cannot be used for early detection
of disease recurrence.

In summary, MFC, ASO-qPCR, and NGS are cur-
rently available molecular methods for MRD assessment
in bone marrow that provide significantly improved sen-
sitivity compared with conventional M-protein diagnos-
tics. All 3 methods reach detection capabilities of at least
10�5, defined as the detection of 1 MM cell among a
background of at least 105 normal leukocytes. Because
of the limited sensitivity of similar methods applied on
peripheral blood, MRD investigation has been restricted
to bone marrow. This may change in the near future
with emerging novel methods for M-protein detection
using MS.

Immunoglobulin Measurements Using MS

The impact of MS on laboratory diagnostics lies in both
novel biomarker discovery and improved capacity to
measure clinical analytes. MS has a long history, primar-
ily for use in small-molecule quantification applied for
confirmations of drugs of abuse, newborn screening,
and screening for steroid hormones (25).

MS methods that measure proteins were imple-
mented much later in clinical laboratories because these
assays are more complex to implement and require
larger investments in terms of trained staff and equip-
ment (26). Increases in the linear dynamic range, as well
as improved speed, resolution, and mass measurement
accuracy, have made these instruments an attractive al-
ternative for characterizing proteins. More user friendly
and more robust, newer generation MS instruments
have begun to play a role in clinical diagnostics (26).

LC-MS is an analytical chemistry technique that
combines the physical separation capacity of liquid chro-
matography with the mass analysis capacity of MS. This
technique can be used to analyze complex samples.
With the introduction of targeted LC-MS, quantifica-
tion of protein biomarkers by measuring peptide surro-
gates has become feasible. As a result, different groups
have pioneered methodology for Ig quantification using
peptides derived from tryptic digestion of the constant
Ig regions (27, 28). In 2014, both groups published
LC-MS/MS methods with stable isotope-labeled inter-
nal standards for quantification of total serum Ig and
IgG subclasses (27, 28). Our group demonstrated that
accurate LC-MS/MS multiplex measurements of Ig
heavy and light chains allowed complete Ig profiling in-
cluding serum FLC quantification (29). Van de Gugten
et al. (30) used an optimized version of the IgG subclass

LC-MS/MS method to demonstrate an apparent IgG4
cross-reactivity with immunonephelometric IgG sub-
class measurements. This cross-reactivity explains the
discrepancies found between total IgG measurements
and the total sum of the individual IgG subclasses ob-
served in patients with IgG4-related disease. In addition
to protein quantification, the rapid improvement in
MS-based proteomics reveals structural Ig features that
were previously unavailable with other techniques such
as sequence information, polyclonal mass distributions,
Ig glycosylation, and other posttranslational modifica-
tions (31–33).

MS as a Novel Method for M-Protein
Measurements in Peripheral Blood

Based on existing literature on analysis of t-mAbs (34), a
concept emerged that MS-based methods could be ap-
plied to measure patient-specific unique features of an M-
protein. Proteomic methods are typically classified by pre-
analytical Ig processing into top-down, middle-down,
and bottom-up (Fig. 2). The intact Ig is the starting ana-
lyte in top-down MS, and the fragmentation pattern fur-
ther elucidates information on the primary structure.
Conversely, bottom-up MS refers to the process in which
the Ig is enzymatically digested into peptides. The Ig pri-
mary structure is inferred from the peptide sequences that
are obtained by LC-MS/MS. These methods can be re-
fined by reduction of the Ig into smaller fragments that
can either be analyzed intact (middle-down) or after fur-
ther digestion into peptides (middle-up) (31, 35).

Important factors that contribute to optimal sensi-
tivity and specificity of these MS methods are chemical
reagents and methods used to isolate Ig and further
cleave or digest these into fragments. Ig isolation
decreases interference from other abundant proteins
such as albumin in serum. Ig isolation can be achieved
by physicochemical fractionation such as Ig precipita-
tion, ion exchange chromatography (based on net
charge), or size exclusion chromatography (based on size
or molecular shape). Class-specific Ig purification can be
achieved by protein A, protein G, or protein L affinity
chromatography or immune capture directed against
specific regions of the Ig of interest (36). Cleaving Ig
into smaller fragments through reduction of disulfide
bonds, for example, with dithiothreitol or by enzymatic
Ig cleavage will result in more manageable and more
specific Ig fragments for further MS characterization.
Peptides produced by further enzymatic digestion of
these Ig fragments provide the input material for
bottom-up MS profiling. Figure 1 provides a graphical
overview of the MS methods to measure serum M-pro-
tein and their complementary value to other techniques
that can be used to measure disease activity in blood
and bone marrow of MG patients.
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The chosen MS method and preanalytical process
are dictated by the underlying clinical or research ques-
tion. In the following paragraphs, we provide examples of
how top-down MS can be used for high-throughput de-
tection of an M-protein based on its unique mass;
bottom-up MS can be used for highly sensitive quantifi-
cation of an M-protein based on unique clonotypic pepti-
des in the variable Ig region; and proteomics approaches
can be used on tissue biopsy to detect monoclonal Ig
deposits, for example, to diagnose AL amyloidosis.

M-Protein Quantification Using Intact
Mass-Specific Methods (Top-down MS)

Intact protein analysis by MS (top-down MS) is based
on monitoring the molecular mass of intact proteins or
protein fragments (Fig. 3, A, upper panel). The applica-
tion of intact protein analysis to M-protein diagnostics

is based on the unique molecular mass and high abun-
dance of the monoclonal Ig distinguishable from the
otherwise polyclonal background. This unique mass can
be determined by MS and serves as a personalized bio-
marker to monitor patients. Sample processing is sim-
pler for intact analysis compared with peptide-based
methods because protein digestion is not necessary. The
only required sample processing step is Ig isolation and
further cleavage into Ig fragments. Ig isolation increases
the analytical sensitivity due to decreased interference
from other highly abundant proteins such as albumin
(37).

The first evidence of feasibility of intact analysis to
monitor M-proteins was described in 2014 by Barnidge
et al. (38). In their proof-of-principle study, they iso-
lated the M-protein from sera from a single patient with
MM and dissociated the Ig into light and heavy chains
(middle-down MS), which were then subjected to liquid

Fig. 2. Ig characterization flowchart using MS methodology. After purification, Ig can be characterized as an intact protein
(top-down), reduced into Ig fragments (middle-down), or digested into peptides (bottom-up). The complementarity-determin-
ing regions, indicated with black lines in the rearranged V(D)J regions, constitute the most variable parts of the Ig and thus
are ideal for selection of clonotypic peptides. CH, constant part of heavy chain; CL, constant part of light chain; SS, disulfide
bond; VH, variable part of heavy chain; VL, variable part of light chain.
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Fig. 3. MS methods used for M-protein detection and quantification. (A), To measure M-proteins in peripheral blood, Ig is puri-
fied from serum. For intact/top-down MS measurement (upper panel), heavy and light chains are separated by reduction, and
their molecular mass is measured by either MALDI-MS or LC-MS. The M-protein has a relatively higher intensity peak at a unique
mass-to-charge ratio that stands out from the polyclonal Ig background. For bottom-up measurement of the M-proteins by their
clonotypic peptides (bottom panel), Ig is digested with proteases. To quantify the clonotypic peptides, stable isotope-labeled
(SIL) calibrator peptides are added, and the transitions of both endogenous peptides and the calibrator are measured by LC-MS/
MS. Parallel reaction monitoring (PRM) is performed on a high-end mass spectrometer capable of measuring more transitions
with higher sensitivity. For SRM, more user-friendly and robust MS is used that can target fewer transitions. The M-protein is
identified by a chromatographic peak at a specific retention time and can be quantified based on its relative intensity to the sta-
ble isotope-labeled calibrator. (B), For amyloid typing by MS, peptide digests are made from laser-microdissected amyloid
lesions. Following LC-MS/MS measurements, a search of the mass spectra is performed against a database to identify amyloid-
defining proteins. LC, liquid chromatography.
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chromatography–quadrupole TOF analysis. Sequential
monitoring of the unique mass of the M-protein light
chain demonstrated improved analytical sensitivity com-
pared with both gel-based techniques and FLC analysis.
Furthermore, M-protein isotyping was possible because
of the unique isotype-specific fragmentation pattern of
the light chain. These proof-of-principle results led to
further validation and development of the technique
coined miRAMM (monoclonal Ig rapid accurate mass
measurement) (39). Subsequent studies revealed
miRAMM to be a powerful tool in M-protein diagnos-
tics and monitoring in matrices other than serum. A
comparative study of light chain monitoring in urine by
miRAMM and by IFE revealed equal analytical sensitiv-
ity of M-protein detection using miRAMM on neat
urine and IFE on 200-fold concentrated urine (97.4%
concordance) (40). Further optimized versions of
miRAMM demonstrated that this method can serve as a
potential clinical assay that extends its analytical sensitiv-
ity for M-protein monitoring beyond that of conven-
tional electrophoretic methods and the FLC assay. The
superior analytical sensitivity of miRAMM was under-
scored in a study with 30 patients with MM reaching
sCR after autologous stem cell transplantation (41). At
Day 100 after autologous stem cell transplantation, sCR
samples had miRAMM identifiable M-proteins in 81%
of patients, indicating increased analytical sensitivity
compared with gel-based techniques. In this small data
set, single time points of miRAMM M-protein status did
not predict better progression-free survival. However,
those patients whose miRAMM intensities decreased in
2 serial measurements had significantly longer
progression-free survival compared with patients who
did not experience decreased miRAMM intensities. The
clinical relevance of miRAMM should be studied in a
larger independent cohort with more frequent follow-up
(41). By analyzing nonreduced samples, miRAMM can
also be applied for detection and quantification of mono-
clonal FLC, for example, for monitoring patients with
light chain MM or AL amyloidosis (42).

One drawback of miRAMM’s limited use in high-
volume routine diagnostics is the use of chromatography
systems. Therefore, a chromatography-free system was
developed by replacing micro Liquid Chromatography-
Electrospray Ionization with MALDI (43). This system
allows higher sample throughput with measurement
times of approximately 1 minute per patient sample.
Moreover, the technique is simple in execution and has
potential for automation. The combination of light
chain immune enrichment and MALDI-TOF was
termed MASS-SCREEN and provided a method to qual-
itatively screen for M-proteins in serum and urine. The
clinical application of MALDI-TOF for M-protein
monitoring in patient sera was demonstrated by
Kohlhagen et al. (44). In a comparative study performed

in >500 patients, the authors demonstrated that
MASS-SCREEN could be a cost-competitive screening
method to detect M-proteins with a detection capability
comparable to that of IFE. Because FLC ratios were
found to be abnormal in 28% of MASS-SCREEN–neg-
ative samples, the method cannot replace FLC immuno-
assays. MALDI-TOF with minimal preanalysis was
recently also applied for rapid screening of monoclonal
FLC in urine (45).

A drawback of MASS-SCREEN is the inability to
distinguish Ig isotypes because the Ig isolation is per-
formed with j- and k-directed nanobodies. To also ac-
count for Ig isotypes while retaining the benefits of
MALDI-TOF analysis, MASS-FIX was introduced (46).
In the MASS-FIX workflow, 5 Ig isolations are per-
formed with nanobodies directed against the constant
domains of the heavy chains (IgG, IgA, and IgM) as and
the light chains (j and k). This isolation strategy and
subsequent MALDI-TOF analysis of the different frac-
tions enables combined identification, isotyping, and
quantification of M-proteins. In a comparative study be-
tween MASS-FIX and routine M-protein diagnostics, it
was shown that M-proteins in 98% of sera and 95% of
urine samples were similarly isotyped by IFE and MASS-
FIX. In this study, the capability for detecting a serum
M-protein by MASS-FIX was at least equal to that of
IFE. MASS-FIX quantification, with interassay CVs of
<20% in most samples, provided equivalent quantitative
information to SPE (46). A separate study that included
clinical samples across the entire spectrum of plasma cell
disorders confirmed that MASS-FIX had a comparable
capacity to detect an M-protein compared with IFE (47).
Increased detection of abnormal FLC ratios was accom-
plished by performing an additional immunoenrichment
using Sepharose-coupled antibodies against FLC followed
by MALDI-TOF MS (48). This approach allows direct
FLC detection and provides added confidence for diag-
nosing MG based on monoclonal FLC.

Atypical mass spectra observed using MASS-FIX
may provide additional information on posttranslational
M-protein modifications (47). An interesting observa-
tion was that a relatively large proportion (16%) of
patients with AL amyloidosis had atypical spectra caused
by glycosylated clonal light chains. It was further shown
that these glycosylated light chains were present years
before the diagnosis of AL amyloidosis (49). This could
be an interesting feature to screen for the risk of asymp-
tomatic patients with MG to progress into AL amyloid-
osis. The pathologic and clinical impacts of these
modifications warrant further research. Modified top-
and middle-down MS can provide broad sequence cov-
erage, which enables extensive mapping and glycoprofil-
ing of M-proteins (50).

Taken together, MASS-FIX is potentially a power-
ful alternative to gel-based techniques in M-protein
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diagnostics, with competitive semiautomated sample
throughput and some clear analytical advantages. In
2018, MASS-FIX replaced IFE in routine clinical prac-
tice at the Mayo Clinic.

M-Protein Quantification Using
Peptide-Specific Methods (Bottom-up MS)

Bottom-up MS using targeted proteomics methods have
been developed for ultrasensitive M-protein monitoring
in peripheral blood that can potentially compete with
MRD testing in bone marrow aspirates. The clonotypic
(also called proteotypic) approach to measuring M-pro-
tein is based on peptide-targeted MS performed on se-
rum digests from MM patients (Fig. 3, A, lower panel).
Peptides unique for patient M-protein are selected and
targeted with selected reaction monitoring (SRM) or
parallel reaction monitoring (28, 51, 52).
Quantification of M-protein is possible by adding stable
isotope-labeled peptides to serum or serum digest (53).
Stable isotope-labeled peptides are selected from the clo-
notypic candidates after assessing their performance for
sensitivity and selectivity.

Clonotypic peptide candidates may be deduced
from patient DNA or RNA sequencing information of
the clonal plasma cells in the bone marrow. The Ig
sequences of the clonal plasma cells are aligned to Ig
germline sequences, and peptides with mutations rela-
tive to the germline sequence are selected. Because of
the V(D)J clonal rearrangements and somatic hypermu-
tations in the Ig complementarity-determining regions,
these sites are considered to be of most interest for clo-
notypic peptide selection. There are 3 complementarity-
determining regions on both heavy and light chains in
the Ig antigen-binding part. For sequencing, 1 bone
marrow aspirate taken during active disease is necessary.
Efforts to develop methodology that no longer requires
bone marrow are ongoing (54). De novo sequencing on
proteomics data may be feasible (55). Computational de
novo sequencing, in which a full amino acid M-protein
sequence would be constructed from experimental,
high-resolution, MS data, could eliminate the need for
genome information and bone marrow sampling if ade-
quate reliability can be achieved (54, 55).

The detection capability of clonotypic targeted M-
protein diagnostics is further improved by Ig purifica-
tion during preanalysis to reduce the complexity of the
patient serum. Digestion of the isolated Ig, including
the M-protein, is most commonly performed with tryp-
sin, and digested serum samples are measured on the
mass spectrometer utilizing SRM (also called multiple re-
action monitoring) (28, 51) and parallel reaction moni-
toring (52) technologies. SRM is usually performed
with triple-quadrupole mass spectrometers to monitor
targeted peptides and their selected fragments. Peptide

and fragment ion pairs are called transitions, and in
SRM, the transitions with the highest signal intensity
have to be selected for every targeted peptide (53).
Conversely, parallel reaction monitoring is performed
on high-resolution and high-accuracy mass spectrome-
ters, and all fragments of targeted peptide can be
detected in parallel, thus requiring less assay develop-
ment than SRM (Fig. 3, A) (56). Although clonotypic
peptides have the potential to offer superior sensitivity,
the process is more laborious and time consuming com-
pared with MS methods performed on reduced Ig frag-
ments such as miRAMM. It is important to note that
effectiveness of the clonotypic MS assay can vary in in-
dividual patients because the number of suitable clono-
typic peptides and their performance is patient-specific.

Murray et al. (54) showed that clonotypic targeting
is >1.000 times more sensitive than SPE quantification
and has the potential to be more sensitive than MRD
analysis performed on bone marrow aspirates. MRD
analysis in bone marrow and MRD analysis on M-pro-
tein in serum both have potential weaknesses. For bone
marrow–based methods, as mentioned earlier, a signifi-
cant portion of patients with MM present with focused
lesions. Such solitary lesions, or extramedullary disease,
would go unnoticed in a bone marrow aspirate unless
performed at the exact site of the lesion.
Nonrepresentative sampling can strongly bias MRD
quantification in bone marrow aspirates. In contrast,
disease activity would go unnoticed in serum-based
assays when performed in the rare event of patients in
whom the MM clone does not secrete an M-protein
(57). Furthermore, the M-protein is a surrogate marker
of a cellular disease state. A confounding factor is the
half-life of M-proteins in the blood: on average, 21 days
for IgG and 10 days for IgA. This causes a delay between
lysis of clonal plasma cells and the decrease in M-pro-
tein. It is challenging to compare the various MRD
methods in terms of analytical performance because
MFC measures myeloma cells, ASO-qPCR and NGS
MRD techniques measure clonal DNA, and MS-based
methods measure the M-protein. A good comparison
between these methods for applicability, performance,
and prognostic value is currently lacking.

MS Specifically Measures M-Protein without
Interference from t-mAbs

The therapeutic landscape of MM has strongly evolved
in the past decade. The first t-mAbs was approved for
MM treatment, and a large list of biologics are being
evaluated in clinical trials (58). Such t-mAbs are all hu-
man(ized) mAbs that can appear on electrophoretic
scans as small monoclonal bands (59–61). In routine
diagnostics, it may be challenging to differentiate the
human(ized) t-mAbs from the endogenous M-protein.
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Consequently, the IMWG response criteria have been
modified to account for the presence of t-mAb interfer-
ence (62). However, comigration of t-mAbs and the en-
dogenous M-protein can result in the inability to
accurately assess therapeutic responses (61, 63).
Electrophoretic interference of t-mAbs can be overcome
using a biologic-specific antibody that binds the t-mAbs
and shifts SPE migration. For daratumumab, a so-called
shift assay has been realized (59). However, electropho-
retic patterns will become increasingly difficult to inter-
pret if multiple t-mAbs are combined for use in a single
patient, and response assessment may not be possible.

MS methods can accurately quantify the M-protein
without interference from multiple t-mAbs. Top-down
MS makes use of the unique high-resolution mass of the
t-mAbs (37, 64, 65). In fact, initial proof-of-concept
work for miRAMM technology was performed by serial
dilutions of adalimumab in normal human serum (38).
In a recent study, miRAMM was able to correctly iden-
tify t-mAbs (daratumumab, elotuzumab, or isatuximab)
and M-protein in 100% of the 192 samples tested (66).
The chance for an M-protein to have a mass so close to
the mass of the t-mAbs to cause interference in top-down
MS is estimated to be small. The problem of t-mAb in-
terference is also solved in the targeted MS workflow by
merely adding unique t-mAb peptides to the assay for tar-
geting (67). Our group has shown that M-protein can be
detected in the presence of 3 additional t-mAbs without
any cross-reactivity (52). By adding reference stable
isotope-labeled peptides for the t-mAbs and for the M-
protein, all can be quantified in a single assay to allow ad-
ditional therapeutic drug monitoring.

MS of Affected Tissue for Detection of AL
Amyloidosis

Amyloidosis is a life-threatening disease caused by extra-
cellular deposition of insoluble fibrils that can affect a
wide variety of organs. Many different proteins have
been identified that form these pathogenic fibrils.
Misfolded monoclonal light chains are the most com-
mon and cause AL amyloidosis (68). Accurate typing of
amyloid is crucial for optimal treatment (68).

Traditionally, histologic diagnosis of AL amyloidosis
is based on Congo red staining to confirm the presence
of amyloidosis. Congo red binds to amyloid fibrils, and
green birefringence is seen under polarized light.
Immunohistochemistry of tissue biopsies, staining the
various potential amyloid proteins, is performed for fur-
ther amyloid typing (69). Immunohistochemistry using
anti–light chain antisera can support confirmation of AL
amyloidosis. However, immunohistochemistry interpre-
tation is challenging because of the limited availability of
type-specific antibodies, signal interference caused by tis-
sue contamination from serum proteins, and false-

negative results caused by the loss of epitopes in fixed tis-
sue sections (69). Moreover, the size of the plasma cell
clone in patients with AL amyloidosis is often modest,
which may further complicate and delay diagnosis (70).

Proteomic typing of amyloid deposits using MS of
affected tissue has not only improved amyloid diagnos-
tics in terms of sensitivity and specificity but also has
identified novel proteins as possible causes of amyloid-
osis (70). Proteomic amyloid typing is performed on
samples collected by laser microdissection; that way, af-
fected lesions enriched for amyloid deposits can be ana-
lyzed using MS (Fig. 3, B). A complete proteome
amyloid signature for diagnosis and typing of amyloid-
osis can be made by MS-based proteomics on subcuta-
neous fat aspirates, which could replace Congo red
staining for confirmation of amyloidosis (71, 72). The
premise is that the protein causing amyloidosis repre-
sents a dominant protein in the deposits. Vrana et al.
(73) have identified peptides from the constant regions
of Ig in all cases of AL amyloidosis tested. Peptides from
the variable regions can also be detected from patient
MS data using an augmented database with light chain
variable region sequence templates (74).

MS-based proteomics have to be performed in spe-
cialized centers because the experimental methods and
data processing require experienced personnel. New
efforts are aimed at amyloid typing by targeted MS uti-
lizing SRM technologies on more clinical laboratory–
friendly, lower resolution mass spectrometers, without
laser microdissection (75). These methods target refer-
ence peptides for light chains to detect AL amyloidosis
and heavy chains to control for serum contamination.
The assays are multiplexed with other targets such as
amyloid A and transthyretin amyloidosis to type amy-
loidosis with high sensitivity and specificity.

Conclusions

M-protein diagnostics can be challenging in individual
patients because of patient-specific unique features. In ad-
dition, more sensitive assays are needed because improved
treatment of patients with MG has resulted in deeper
responses, with an increased number of patients who ob-
tain sCR in which no disease activity is observed with rou-
tine M-protein diagnostics. Intact protein MS methods
and clonotypic peptide MS methods have been developed
that show promise for high-throughput M-protein detec-
tion and MRD measurements. These MS-based methods
to measure M-proteins are applied on peripheral blood,
which makes serial sampling possible to guide optimal per-
sonalized treatment. Consequently, they form an attractive
alternative to the bone marrow–based methods currently
applied for MRD detection (Table 1).

Although MS-based methods to measure M-pro-
teins seem promising, several aspects have not been fully
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addressed. First, current MS studies are based on rela-
tively small sample sizes. Their feasibility and applicabil-
ity in large cohorts have not yet been shown. Second,
most studies have focused on MM and AL amyloidosis,
with relatively little information on the applicability of
MS-based methods in other MG, such as
Waldenström’s macroglobulinemia and plasmacytoma.
Third, thresholds for sCR and MRD in peripheral
blood using MS methods need to be defined. Finally, a
direct comparison in which applicability, performance,
prognostic value, and operational aspects such as cost
and turnaround-time of MRD measured in bone mar-
row versus MS in peripheral blood has not yet been per-
formed. MRD status obtained in bone marrow provides
information that cannot be achieved by MS, such as
clone evolution and bone marrow reconstitution. As
such, we anticipate that, in the future, MS will not re-
place existing MRD tests in bone marrow but will have
clinical value as a companion method, especially for
monitoring of MRD in blood. This approach is in line
with the recent IMWG recommendation (20) that the
development of blood-based MRD monitoring should
be the ultimate goal, as it would allow for serial sam-
pling without the trauma of repeated bone marrow aspi-
rations and ensures assessment of extramedullary
disease, which is not evaluated by bone marrow biopsy.

Nonstandard abbreviations: MG, monoclonal gammopathy; Ig,
immunoglobulin; M-protein, monoclonal immunoglobulin; MM,

multiple myeloma; AL, amyloid light chain; FLC, free light chain; sCR,
stringent complete response; MRD, minimal residual disease; t-mAb,
therapeutic monoclonal antibody; MS, mass spectrometry; SPE,
serum protein electrophoresis; IFE, immunofixation electrophoresis;
IMWG, International Myeloma Working Group; MFC, multicolor
flow cytometry; ASO-qPCR, allele-specific oligonucleotide–quantitative
PCR; NGS, next-generation sequencing; miRAMM, monoclonal im-
munoglobulin rapid accurate mass measurement; SRM, selected reaction
monitoring.
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